On an adaptive preconditioned Crank-Nicolson MCMC algorithm for infinite dimensional Bayesian inference

نویسندگان

  • Zixi Hu
  • Zhewei Yao
  • Jinglai Li
چکیده

The preconditioned Crank-Nicolson (pCN) method is a MCMC algorithm for implementing the Bayesian inferences in function spaces. A remarkable feature of the algorithm is that, unlike many usual MCMC algorithms, which become arbitrary slow under the mesh refinement, the efficiency of the algorithm is dimension independent. In this work we develop an adaptive version of the pCN algorithm, where the proposal is adaptively improved based on the sample history. Under the chosen parametrization of the proposal distribution, the proposal parameters can be efficiently updated in our algorithm. We show that the resulting adaptive pCN algorithm is dimension independent and has the correct ergodicity properties. Finally we provide numerical examples to demonstrate the efficiency of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric MCMC for infinite-dimensional inverse problems

Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon meshrefinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and t...

متن کامل

Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact ‎solution

The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...

متن کامل

Comparison of The LBM With the Modified Local Crank-Nicolson Method Solution of Transient Two-Dimensional Non-Linear Burgers Equation

Burgers equation is a simplified form of the Navier-Stokes equation that represents the non-linear features of it. In this paper, the transient two-dimensional non-linear Burgers equation is solved using the Lattice Boltzmann Method (LBM). The results are compared with the Modified Local Crank-Nicolson method (MLCN) and exact solutions. The LBM has been emerged as a new numerical method for sol...

متن کامل

An Adaptive Independence Sampler Mcmc Algorithm for Infinite-dimensional Bayesian Inferences∗

Many scientific and engineering problems require to perform Bayesian inferences in function spaces, in which the unknowns are of infinite dimension. In such problems, many standard Markov Chain Monte Carlo (MCMC) algorithms become arbitrary slow under the mesh refinement, which is referred to as being dimension dependent. In this work we develop an independence sampler based MCMC method for the...

متن کامل

Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions

In this paper we study algorithms to find a Gaussian approximation to a target measure defined on a Hilbert space of functions; the target measure itself is defined via its density with respect to a reference Gaussian measure. We employ the Kullback–Leibler divergence as a distance and find the best Gaussian approximation by minimizing this distance. It then follows that the approximate Gaussia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 332  شماره 

صفحات  -

تاریخ انتشار 2017